
Conceptual Architecture Description

Structural View

The Component Behaviour Evaluation (ComponentBee) tool consists of four main
packages (Figure 1):

1. The test execution package provides components capable of producing
information from the dynamic behaviour of components and finally writing a test
report of the observed behaviours.

2. The behaviour presentation package provides various kinds of presentation
components capable of presenting dynamic behaviour of components.

3. The test model package provides components enabling software integrators to
define various kinds of test models supporting R&A testing of OS components.

4. The test creation package provides tool components to help software integrators
to create test models for the R&A testing.

In order to increase the level of modularity, the components of the packages
communicate with each other via predefined interfaces. Each package is divided into
core and implementation parts. The core part provides interfaces for the components of
the package whereas the implementation part provides the reference implementations for
the core interfaces. In addition, predefined extension points enable developers to extend
the ComponentBee tool with new Eclipse plug-ins.

ModelUpdater

ProbeKitGenerator

ComponentUnderTest[0..*]

TestEditor

UMLImporter

UMLExporter

ParserGenerator

ModelUpdater

ProbeKitGenerator

ComponentUnderTest[0..*]

TestEditor

UMLImporter

UMLExporter

ParserGenerator

fi.vtt.componentbee.behaviourlog.preprocessors

Profiler BehaviourAbstractorMessageLogComposer BehaviourParser TestReportWriterBehaviourTreeComposerProfiler BehaviourAbstractorMessageLogComposer BehaviourParser TestReportWriterBehaviourTreeComposer

fi.vtt.componentbee.behaviourlog

RawLog MessageLog[1..*] AbstractBehaviourTree BehaviourPattern[1..*] TestReportBehaviourTreeRawLog MessageLog[1..*] AbstractBehaviourTree BehaviourPattern[1..*] TestReportBehaviourTree

ProbeKit

Adaptor[0..*] TestModel

AbstractTestModel[0..*] MetaTestModel

Evaluator[0..*]

RawLogWriterExtension[0..*]

ProbeKit

Adaptor[0..*] TestModel

AbstractTestModel[0..*] MetaTestModel

Evaluator[0..*]

RawLogWriterExtension[0..*]

create

use create
create

use create use create

use

use

observe

create

use

define
define

refine

create / use
create

use

use

update

Test
Execution

Presentations
for Behaviours

Test Model

Test
Construction

use

useuse
use

useuse

MessageClassifier[*]

use

create

use

define

use

use define

Figure 1. The main packages of ComponentBee.

The requirement specification determines that the ComponentBee must provide access
and extension points for downstream plug-ins. They are described in the table 1. The
ComponentBee provides two kinds of extension points: Eclipse and dynamic extension
points. The Plug-in Development Environment (PDE) provides tools to create, develop,
test, debug, build and deploy Eclipse plug-ins for the Eclipse extension points. The
dynamic extension points provide a mechanism to extend the ComponentBee at run-time
with the plug-ins being developed in the workspace of Eclipse.

Table 1. The extension and access points of the ComponentBee.

Eclipse Extension Point Description

ProbekitGenerator
An extension point that enables developers to extend
ComponentBee with a plugin that generates a probekit for
the test model.

BehaviourParserGenerator
An extension point that enables developers to extend
ComponentBee with a plugin that generates a behaviour
parser for the test model.

RawLogEvaluator
An extension point that enables developers to extend
ComponentBee with plugins that process the raw log and
produce new presentations for it.

UMLImporter
An extension point that enables developers to extend
ComponentBee with plugins that are capable of importing
UML models to test models.

UMLExporter
An extension point that enables developers to extend
ComponentBee with plugins that are capable of exporting
UML models from test models.

Dynamic Extension Point Description

Evaluator element An extension point that provides means to utilise new plugins
in behaviour evaluation.

RawLogWriterExtension element An extension point that enables software integrators to use
various kinds of plugins in raw log information recording.

MessageClassifier element
An extension point that enables software integrators to use
various kinds of plugins classifying messages to different
classes.

BehaviourParser element An extension point that enables software integrators to use a
behaviour parser in raw log information processing.

Access Point Description

TestModel An access point that enables UML import and export plugins
to access information provided in the test model.

RawLog An access point that enables evaluator plugin to access
collected log information.

MessageLog An accesss point that enables evaluator plugin to navigate in
the message log.

BehaviourTree
An accesss point that enables evaluator plugin to navigate
between synchronous and asynchronous messages
delivered between components in different threads.

AbstractBehaviourTree

An accesss point that enables evaluator plugin to navigate
between synchronous and asynchronous messages
delivered between components in different threads. An
abstract behaviour tree contains only messages that are
defined in the test model.

BehaviourPattern
An access point that enables evaluator plugins to navigate in
behaviour pattern tree and to add evaluation data to the
extracted behaviour patterns .

TestReport An access point that provides access to the behaviour
patterns recorded to the test report.

Behavioural View

Figure 1 illustrates the communications between the components of main packages.

The TestEditor enables software integrators to create new TestModels that can refine more abstract test
models (Figure 2). The UMLImporter is capable of importing UML diagrams to test models and
UMLExporter is capable of exporting UML models from test models.

for all behaviour sequencesseq

TestEditor UMLImporter
ApplicationTestModel

<<TestModel>>
DomainSpecificTestModel

<<TestModel>>
GenericTestModel
<<TestModel>> ProbeKitGenerator ProbeKit ParserGenerator BehaviourParser

1
<<create>>

2 : refine()

3 : import() 4 : import()

5 : refine()
6 : refine()

7 : importSequence()

8 : edit()

9 : generateProbeKit()

10 : getAdaptorElements()
11

<<create>>

12 : generateBehaviourParser()

13 : getModelElements()
14

<<create>>

Figure 2. The test creation sequence.

The ProbeKitGenerator is capable of generating ProbeKit for the test model. The ProbeKit defines probes
that will record raw log information about the input attributes and return values of methods and the states of
the components to XML-based behaviour logs. The ParserGenerator takes the test model as an input and
generates a BNF grammar to define production rules for the behaviours defined in the test model and then
finally calls the JavaCC compiler-compiler (https://javacc.dev.java. net/) to generate a behaviour parser for
the grammar.

Profiler attaches probes to the components under test (Figure 3). The probes call RawLogWriterExtensions
to write information to the raw log file.

Raw Log Recordingseq

ProbeKit RawLogWriterExtensionProfiler TargetSoftwareSystem RawLogProbe

1 : use()
2 : attachToMethods() 3 : observe()

4 : run()

5 : methodEntry()
6 : insertLogEntry()

7 : methodExit()
8 : insertLogEntry()

Figure 3. The raw log recording sequence.

The pre-processors will read the raw log file and create evaluation data in the following steps (Figure 4):

1. MessageLogComposer creates message logs of the raw log information, defining a sequence of
messages that are delivered between different components in various threads during the test.

2. BehaviourTreeComposer creates an overall presentation (a behaviour tree) for the message

sequences delivered in different threads.

3. BehaviourAbstractor calls message classifiers to classify the messages of the behaviour tree first
and then creates an abstract behaviour tree of the composed behaviour tree containing only the
messages defined in the test model. The model-based message classifier gives names for the
messages that are defined in the test model. In addition, the message classifiers defined in test
model can use the recorded log information, do data and message sequence-based message
classifications, and finally give more specific classifications for the messages.

4. BehaviourParser extracts behavior patterns and composes a symbol tree of the abstract behaviour

tree. The nodes of the tree define extracted behaviour patterns and messages related to these.

5. TestReportWriter calls evaluators that are defined in the test model to attach evaluation data to the
behaviour patterns first and then writes the behaviour patterns to the test report.

PreProcessorPipe
<<PreprocessorComposite>>

MessageLogComposer
<<PreProcessor>>

BehaviourTreeComposer
<<PreProcessor>>

TestReportWriter
<<PreProcessor>>

BehaviourParser
<<PreProcessor>>

BehaviourAbstractor
<<PreProcessor>>

RawLog

MessageLog

BehaviourTree

AbstractBehaviourTree

BehaviourPattern

TestReport

EvaluatorMessageClassifier

1 : process()
2 : use()

3
<<create>>

4 : process() 5 : use()

6
<<create>>

7 : process() 8 : use()

9 : classify()

10
<<create>>

11 : process()
12 : use()

13
<<create>>

14 : process() 15 : evaluate()
16 : addEvaluationData()

17
<<create>>

Figure 4. The evaluation sequence of raw log information.

 Deployment View

 Figure 5 illustrates how the ComponentBee tool is deployed.

Eclipse Platform

ComponentBee

Java Virtual Machine

Java Virtual Machine Profiler Interface (JVMPI)

ProbeKitEvents

TestModel
<<artifact>>

AbstractTestModel
<<artifact>>

TPTP
<<artifact>>

JavaCC
<<artifact>>

GMF
<<artifact>>

EMF
<<artifact>>

JDT
<<artifact>>

Test Bed

SoftwareUnderTest

Figure 5. The ComponentBee deployment.

The ComponentBee is an extension to the Eclipse IDE that is typically running in a desktop computer. The
dynamic testing of software components is performed in a test bed that runs in a Java Virtual Machine. The
raw log information of dynamic behaviour of components is collected by utilising Java Virtual Machine
Profiler Interface (JVMPI) and ProbeKits.

Development View

The ComponentBee tool is by no means on isolated island – it is dependent on various tools developed by
other open source communities. Figure 6 shows the technologies utilised in ComponentBee.

ComponentBee

ProbeKitGeneratorTestModelEditor EvaluatorToolParserGeneratorProbeKitGeneratorTestModelEditor EvaluatorToolParserGenerator

Software Integrator

Eclipse PDE
<<artifact>>

Use
Eclipse Platform

SWT Graphics Library
<<artifact>>

Extends

Extends

Uses Uses

VTT & OS Community

Different OS Communities

Nebula Community

JavaCC
<<artifact>>

Use

TestModel
<<artifact>>

AbstractTestModel
<<artifact>>

TPTP
<<artifact>>

GMF
<<artifact>>

EMF
<<artifact>>

JDT
<<artifact>>

Use

Use Use

UseUse

Use

Develops Refine

Create

Use

Develop

Create

Develop Develop Develop Develop

DevelopDevelop

Use

Java Virtual Machine

Java Virtual Machine Profiler Interface (JVMPI)

ProbeKit

Test Bed

SoftwareUnderTest

Use

Profiler
<<artifact>>

Figure 6. The development view of ComponentBee.

Test models are EMF models that are created with the test model editor that is in turn constructed by
utilising GMF. The behaviour parsers are generated with JavaCC, the dynamic behaviour is logged by

utilising the ProbeKit of TPTP. The components, methods, data structures, and comments of the
components under test are obtained by utilising the methods of JDT.

Eclipse Platform and Eclipse Plug-in Development Environment (PDE) are developed by respective
communities under the official Eclipse project. The development of Standard Widgets Toolkit is managed
by the Eclipse platform community, but new widgets originate from the Nebula project which is a source of
supplemental SWT widgets and an “incubator” for SWT. The TPTP, EMF, GMF, JDT, and JavaCC
components are developed in various OS projects. The further development of ComponentBee relates to
these projects. VTT and OS community can extend ComponentBee with new features or then provide more
abstract test models supporting Reliability and Availability (R&A) testing of various kinds of application-
domains and component-based software systems. Software integrators can later refine these abstract test
models and use them in R&A testing of actual component-based software implementations.

